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Multimessage Multicast Networks (MMNs)

Multiple sources transmit messages to multiple destinations.

Each source transmits 1 message.

Each destination decodes all the messages.

Examples include the butterfly network and the relay channel.
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Some MMNs with Known Capacity Regions

2X
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Finite-field linear deterministic network [Avestimehr et al., 2011]
– Y3 = X1 + X2 ∈ GF(pn) for some finite field GF(pn)

MMN consisting of independent DMCs [Köetter et al., 2011]
– Y3 = (X1 + Z1,X2 + Z2) where Z1 and Z2 are independent noises.

– The linear network coding model is a special case when Z1 = Z2 = 0
[Li et al., 2003].

Wireless erasure network [Dana et al., 2006]

– Y3 = (X̂1, X̂2) where X̂i =

{
erasure with prob. εi

Xi with prob. 1− εi .

The direct part uses random coding. The converse part uses Fano’s
inequality, which yields a weak converse.
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Weak Converse

Assumption: The probability of decoding error vanishes as the
blocklength increases.

If the rate tuple of a code falls outside the capacity region, the
probability of decoding error must be bounded away from 0 as the
blocklength increases.

For the DMC example, consider any sequence of the optimal length-n
schemes with rate R which minimize the error probability:
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Strong Converse

Weaker assumption: The asymptotic probability of decoding error is
upper bounded by some ε ∈ [0, 1) as the blocklength increases.

If the rate tuple of a code falls outside the capacity region, the
probability of decoding error must tend to 1 as the blocklength
increases.
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Motivation of This Work

Although the capacity regions of the aforementioned DM-MMNs are
well-known, only the weak converse has been proved using Fano’s
inequality.

Therefore we are motivated to prove the strong converse using Rényi
divergence:

– Powerful technique for establishing strong converse theorems.

– Has been employed previously to establish strong converse for DMC
with output feedback [Polyanskiy and Verdú, 2010], classical-quantum
channels [Ogawa and Nagaoka, 1999], and entanglement-breaking
quantum channels [Wilde et al., 2013].
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Network Model

Let I , {1, 2, . . . ,N} be the index set of the nodes.

Let S ⊆ I and D ⊆ I denote the set of source and destination nodes
respectively.

The sources in S transmit information to the destinations in D in n
time slots:

– Each source i ∈ S chooses Wi to transmit. Message Wi is uniform on
{1, 2, . . . , 2nRi} where Ri denotes the rate of Wi .

– Each destination j ∈ D wants to decode WS .

Each node i transmits Xi ,k and receives Yi ,k in time slot k .

Xi ,k is a function of (Wi ,Y
k−1
i ).

The channel is characterized by qYI |XI : For each k ∈ {1, 2, . . . , n},

Pr{YI,k = yI,k |WI = wI ,X
k
I = xkI ,Y

k−1
I = yk−1

I } = qYI |XI (yI,k |xI,k)
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ε-Capacity Region

Define RI , (R1,R2, . . . ,RN) to be a rate tuple.

– Assume wlog Ri = 0 ∀i /∈ S .

A length-n code operating at rate RI is called an (n,RI , εn)-code if
the average probability of decoding error is εn.

RI is ε-achievable if ∃ a sequence of (n,RI , εn)-codes such that
lim sup
n→∞

εn ≤ ε .

ε-capacity region Cε , {RI : RI is ε-achievable}

Fano’s inequality yields an outer bound for only C0
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Cut-Set Outer Bound

A well-known outer bound on the capacity region of DM-MMN
developed by El Gamal in 1981.

C0 ⊆
⋃
pXI

⋂
T⊆I:

T c∩D6=∅

{
RI

∣∣∣ ∑
i∈T

Ri ≤ IpXI qYI|XI (XT ;YT c |XT c )
}

Applying it to the relay channel, we have

R ≤ max
pX1,X2

min{I (X1;Y2,Y3|X2)︸ ︷︷ ︸
cut T1

, I (X1,X2;Y3)︸ ︷︷ ︸
cut T2

}
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Simplified Noisy Network Coding (NNC) Inner Bound

Simplified noisy network coding (NNC) inner bound [Lim et al., 2011]:

C0 ⊇
⋃

pXI :pXI
=
∏N

i=1 pXi

⋂
T⊆I:

T c∩D6=∅

{
RI

∣∣∣ ∑
i∈T

Ri ≤ I (XT ;YT c |XT c )− H(YT |XI ,YT c )
}

Similar to the cut-set bound:

C0 ⊆
⋃
pXI

⋂
T⊆I:

T c∩D6=∅

{
RI

∣∣∣ ∑
i∈T

Ri ≤ IpXI qYI|XI (XT ;YT c |XT c )
}

For the finite-field linear deterministic network, MMN consisting of
independent channels and the wireless erasure network,

NNC inner bound = cut-set bound
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Main Theorem

Theorem (Strong Converse Outer Bound)

For each ε ∈ [0, 1),

Cε ⊆
⋂

T⊆I:
T c∩D6=∅

⋃
pXI

{
RI

∣∣∣ ∑
i∈T

Ri ≤ IpXI qYI|XI (XT ;YT c |XT c )
}

Compare with cut-set outer bound:

C0 ⊆
⋃
pXI

⋂
T⊆I:

T c∩D6=∅

{
RI
∣∣∣ ∑
i∈T

Ri ≤ IpXI qYI|XI (XT ;YT c |XT c )
}

Reason for the gap:

– Both proofs first fix an arbitrary T and then find a distribution p
(T )
XI

such
that

∑
i∈T

Ri ≤ I
p

(T )
XI

qYI|XI
(XT ;YT c |XT c ) for the ε-achievable RI .

– In the proof of cut-set bound, p
(T )
XI

are the same for all T .

– In the proof of strong converse bound, p
(T )
XI

can be different for different T .
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Strong Converse for Classes of MMNs

Proposition
For the finite-field linear deterministic network, MMN consisting of independent
channels and the wireless erasure network,

strong converse bound = cut-set bound
known

= NNC inner bound.

Corollary (Strong converse)

Consider a network belonging to one of the above three classes. For each ε ∈ [0, 1), our
main theorem implies that Cε ⊆ strong converse bound. Combining with the proposition
above, we have Cε ⊆ NNC inner bound. Since NNC inner bound ⊆ Cε, we have

Cε = NNC inner bound.
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Rényi Divergence

Definition

The conditional Rényi divergence with parameter λ ∈ [1,∞) between pX |Z
and qX |Z given rZ is

Dλ(pX |Z‖qX |Z |rZ ) ,


1

λ−1
log

∑
z∈Z

rZ (z)
∑
x∈X

(pX|Z (x|z))λ

(qX|Z (x|z))λ−1 if λ > 1,

D(pX |Z‖qX |Z |rZ ) if λ = 1

where

D(pX |Z‖qX |Z |rZ ) ,
∑
z∈Z

rZ (z)
∑
x∈X

pX |Z (x |z) log
pX |Z (x |z)

qX |Z (x |z)

is the relative entropy.

Data processing inequality (DPI)

Dλ(pX‖qX ) ≥ Dλ(pg(X )‖qg(X ))

for any function g . In particular, Dλ(pX ,Y ‖qX ,Y ) ≥ Dλ(pX‖qX ).
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Properties of Rényi Divergence

Lemma 1 ( Mutual information approximation)

Dλ(pXY |Z‖pX |ZpY |Z |rZ ) ≤ D(pXY |Z‖pX |ZpY |Z |rZ ) + 8(λ− 1)|X |5|Y|5

= IrZ pXY |Z (X ;Y |Z) + 8(λ− 1)|X |5|Y|5

Lemma 2 (Chain rule)

Given
n∏

k=1

pYk |Xk
,

n∏
k=1

qYk |Xk
and rXn

I
, we have

Dλ

(
n∏

k=1

pYk |Xk

∥∥∥∥∥
n∏

k=1

qYk |Xk

∣∣∣∣∣ rXn
I

)
=

n∑
k=1

Dλ(pYk |Xk
‖qYk |Xk

|r (λ)
Xk

)

where r
(λ)
Xk

which is determined by λ,
k−1∏
m=1

pYm|Xm ,
k−1∏
m=1

qYm|Xm and rX k
I
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Recalling Proof Steps for Cut-Set Bound

1 Lower bounding the error probability in terms of mutual information
using Fano’s inequality

n
∑

i∈T Ri ≤ I (WT ; ŴT ,d |WT c ) + 1 + εnn
∑

i∈T R

2 Using the DPI of the mutual information to introduce the channel
output

I (WT ; ŴT ,d |WT c ) ≤ I (WT ;Y n
T c |WT c )

3 Single-letterizing the mutual information

I (WT ;Y n
T c |WT c ) ≤

∑n
k=1 I (XT ,k ;YT c ,k |XT c ,k)

4 Introduction of a time-sharing random variable Qn∑n
k=1 I (XT ,k ;YT c ,k |XT c ,k) ≤ nI (XT ,Qn ;YT c ,Qn |XT c ,Qn)

5 Combining the above inequalities, using limn→∞ εn = 0∑
i∈T Ri ≤ I (XT ;YT c |XT c )
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Proof Steps Using Rényi Divergence

1) Lower bounding the error probability in terms of the Rényi divergence∑
i∈T

nRi ≤ Dλ(pWT ,ŴT,d
‖pWT sŴT,d

) + λ(λ− 1)−1 log

(
1

1− εn

)
for any choice of sŴT,d

.

2) Using the DPI of the Rényi divergence to introduce the channel input and output
with a proper choice of sXn

I ,Y
n
I ,ŴT,d

Dλ(pWT ,ŴT,d
‖pWT sŴT,d

) ≤Dλ

(
n∏

k=1

qYTc ,k |XI,k

∥∥∥∥∥
n∏

k=1

sYTc ,k |XI,k

∣∣∣∣∣ pXn
I

)

3) Single-letterizing the Rényi divergence using the chain rule

Dλ

(
n∏

k=1

qYTc ,k |XI,k

∥∥∥∥∥
n∏

k=1

sYTc ,k |XI,k

∣∣∣∣∣ pXn
I

)
=

n∑
k=1

Dλ(qYTc |XI‖sYTc ,k |XTc ,k
|p(λ)

XI,k
).
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Proof Steps Using Rényi Divergence

4) Representing distributions in the Rényi divergence by a single distribution

Due to the careful choice of sXn
I ,Y

n
I ,ŴT×{d}

, we can define p̃
(λ)
XI,k ,YTc ,k

s.t.

n∑
k=1

Dλ(qYTc |XI‖sYTc ,k |XTc ,k
|p(λ)

XI,k
) ≤

n∑
k=1

Dλ(p̃
(λ)
YTc ,k |XI,k

‖p̃(λ)
YTc ,k |XTc ,k

|p̃(λ)
XI,k

) .

5) Introduction of a time-sharing variable followed by approximating I with Dλ.

Using a time-sharing variable Qn and letting λ = 1 + 1√
n
,

n∑
k=1

D1+ 1√
n

(p̃
(1+ 1√

n
)

YTc ,k |XI,k
‖p̃

(1+ 1√
n

)

YTc ,k |XTc ,k
|p̃

(1+ 1√
n

)

XI,k
)

≤ nD1+ 1√
n

(p̃
(1+ 1√

n
)

YTc ,Qn
|XI,Qn

‖p̃
(1+ 1√

n
)

YTc ,Qn
|XTc ,Qn

|p̃
(1+ 1√

n
)

XI,Qn
)

≤ nI (XT ;YT c |XT c ) + 8|X |5|Y|5
√
n

Combining the steps and letting n→∞,∑
i∈T

Ri ≤ I (XT ;YT c |XT c ).
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Conclusion

In a multimessage multicast network (MMN), every source node transmits a
message and every destination node decodes all the messages.

A strong converse outer bound for the discrete memoryless MMN have been
established using Rényi divergence, i.e., outer bound on Cε.

For any sequence of codes that operate at a rate tuple outside the strong
converse bound, the average probability of decoding error must tend to 1.

Our strong converse bound implies the strong converse some classes of
MMNs including

The finite-field linear deterministic network.

The MMN consisting of independent DMCs.

The wireless erasure network.

For the aforementioned MMNs, we have fully characterized their ε-capacity
regions, which coincide with the NNC inner bound and the cut-set bound.

Open problem: Prove or disprove that the cut-set bound contains Cε.
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