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Multimessage Multicast Networks (MMNs)

@ Multiple sources transmit messages to multiple destinations.
@ Each source transmits 1 message.
@ Each destination decodes all the messages.

@ Examples include the butterfly network and the relay channel.
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Some MMNs with Known Capacity Regions

o Finite-field linear deterministic network [Avestimehr et al., 2011]
- Ys = X1 + Xo € GF(p") for some finite field GF(p")

e MMN consisting of independent DMCs [Koetter et al., 2011]
- Y3 = (X1 + Z1, X2 + Z2) where Z; and Z, are independent noises.
— The linear network coding model is a special case when Z; = Z, =0
[Li et al., 2003].

@ Wireless erasure network [Dana et al., 2006]

erasure with prob. ¢;

— Y3 = (X1, Xz) where X; =
3 = (X1, X2) where {X,- with prob. 1 —¢;.

@ The direct part uses random coding. The converse part uses Fano's
inequality, which yields a weak converse.

Silas Fong (NUS) Strong Converse for MMNs January 21, 2015 4 /20



Weak Converse

@ Assumption: The probability of decoding error vanishes as the
blocklength increases.

o If the rate tuple of a code falls outside the capacity region, the
probability of decoding error must be bounded away from 0 as the
blocklength increases.

@ For the DMC example, consider any sequence of the optimal length-n
schemes with rate R which minimize the error probability:
Error prob. limit of the

optimal scheme for DMC
with rate R i

~

Capacity
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Strong Converse

@ Weaker assumption: The asymptotic probability of decoding error is
upper bounded by some ¢ € [0, 1) as the blocklength increases.

o If the rate tuple of a code falls outside the capacity region, the
probability of decoding error must tend to 1 as the blocklength
increases.

Error prob. limit of the
optimal scheme for DMC
with rate R i

1

Capacity
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Motivation of This Work

@ Although the capacity regions of the aforementioned DM-MMNs are
well-known, only the weak converse has been proved using Fano's
inequality.

@ Therefore we are motivated to prove the strong converse using Rényi
divergence:
— Powerful technique for establishing strong converse theorems.

— Has been employed previously to establish strong converse for DMC
with output feedback [Polyanskiy and Verdd, 2010], classical-quantum
channels [Ogawa and Nagaoka, 1999], and entanglement-breaking
quantum channels [Wilde et al., 2013].
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Network Model

o Let Z= {1,2,..., N} be the index set of the nodes.

@ Let S C 7 and D C T denote the set of source and destination nodes
respectively.

@ The sources in S transmit information to the destinations in D in n
time slots:
— Each source i € S chooses W; to transmit. Message W; is uniform on
{1,2,...,2"R} where R; denotes the rate of W;.
— Each destination j € D wants to decode Ws.

Each node / transmits X; , and receives Yj , in time slot k.

Xi k is a function of (W}, Y.kfl).

1

@ The channel is characterized by gy, |x,: For each k € {1,2,...,n},

PH{Yz o =yrulWr =wr, XF =x5, Y5 =y} = Qv xe (o klxz k)
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e-Capacity Region

e Define Rz = (R, Ry, ..., Ry) to be a rate tuple.
— Assumewlog R =0Vi¢S.

@ A length-n code operating at rate Ry is called an (n, Rz,e,)-code if
the average probability of decoding error is ¢,,.

@ Ry is e-achievable if 3 a sequence of (n, Rz, e,)-codes such that
limsupe, <e .
n—o00

o c-capacity region C. = {Rz : Rr is e-achievable}

@ Fano’s inequality yields an outer bound for only Cg
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Cut-Set Outer Bound

@ A well-known outer bound on the capacity region of DM-MMN
developed by EI Gamal in 1981.

G U ﬂ {RI i;’ Ri < oy v, (XT3 Y7 XT) }

pPxy TCI:
T<NDAD

@ Applying it to the relay channel, we have

R S max min{I(Xl; YQ, Y3|X2), /(Xl,Xg; Y3)}

PXq,Xo

Vv TV
cut T cut Ty
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Simplified Noisy Network Coding (NNC) Inner Bound

@ Simplified noisy network coding (NNC) inner bound [Lim et al., 2011]:

Co 2 U ﬂ {RI

PX7PX1 TCZI:
=I1Y, Px; T ND#D

Z R,' S I(XT; YTc‘XTc) — H(YT|)<I7 YTC)

ieT

@ Similar to the cut-set bound:

COQU ﬂ {RI

px; TCI:
T ND#D

;{_ Ri < IPquYI|xI (X7 Y7e| X7¢) }

@ For the finite-field linear deterministic network, MMN consisting of
independent channels and the wireless erasure network,

NNC inner bound = cut-set bound

Silas Fong (NUS) Strong Converse for MMNs January 21, 2015

j

11/ 20



Theorem (Strong Converse Outer Bound)
For each ¢ € [0, 1),

c.c N U{r

TCZI: px;
T<ND#D

5 R1 < gy (XT3 Yl X))

@ Compare with cut-set outer bound:

Z Ri < IPquYIp(I (XT; YTC|XTC) }

ieT

TCND#0D
@ Reason for the gap:
(T
A

— Both proofs first fix an arbitrary T and then find a distribution p)
that > R </ (X7; Yre|X7c) for the e-achievable Rz.

g
i€T xz YzlXz
)

) such

— In the proof of cut-set bound, pg are the same for all T.

— In the proof of strong converse bound, p&? can be different for different T.
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Strong Converse for Classes of MMNs

For the finite-field linear deterministic network, MMN consisting of independent
channels and the wireless erasure network,

k .
strong converse bound = cut-set bound =" NNC inner bound.

Corollary (Strong converse)

Consider a network belonging to one of the above three classes. For each € € [0,1), our
main theorem implies that C. C strong converse bound. Combining with the proposition
above, we have C. € NNC inner bound. Since NNC inner bound C C., we have

Ce = NNC inner bound.
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Rényi Divergence

The conditional Rényi divergence with parameter A € [1,00) between px,7
and gx|z given rz is

= _(xiz(d2)*
= IogZEZZ rz(z) XEZX Dz if A>1,
D(px|zllax|zlrz) ifa=1

Dx(px|zllax)z|rz)

where

px|z(x|z)
D(pxzllaxzlrz) = Zrz(z ZPX|Z x|2) Iog il ety o)
zEZ XEX

is the relative entropy.

Data processing inequality (DPI)

Dx(pxllax) = Da(pgx)ll9e(x))
for any function g. In particular, Dx(px,v|lgx,vy) > Dxa(px||gx)-
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Properties of Rényi Dive

Lemma 1 ( Mutual information approximation)

Dx(pxv|zllpxizPy|z|rz) < D(pxvizllpx|zPy|z|rz) + 8(X — 1)| X P |Y|°
= I'szv|z(X; Y|Z) +8(\ - 1)|X|5|y|5

Lemma 2 (Chain rule)

n n
Given kl:Il PY | X, » kU1 v, |x, and rxz, we have

n n
Dy (H PY, | X, H ay | X
k=1 k=1

n
A
rX%) = Z DX(ka‘XquYk‘Xklr)((k))

k=1
N k=1 k=1

where r)(<k) which is determined by A, IT pv,x,, I av,x, and rxx
m=1 m=
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Recalling Proof Steps for Cut-Set Bound

@ Lower bounding the error probability in terms of mutual information
using Fano's inequality
ny icr Ri < I(Wr Wr g|Wre)+1+4e,n) i+ R

@ Using the DPI of the mutual information to introduce the channel
output
I(WT; WT,d|WT‘-‘) < /(WT; Y7'1C|WTC)

© Single-letterizing the mutual information
I(Wr; Y2 Wre) < S0y (X7 ki Y7e k| X7e k)

@ Introduction of a time-sharing random variable @,
>kt (X7 ki YTe | XTe 1) < 0l (X7 0,1 YTe,0,1XT<,0,)

© Combining the above inequalities, using lim, oo ep =0
ZiGT R,' < /(XT; YTc‘XTc)
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Proof Steps Using Rényi Divergence

1) Lower bounding the error probability in terms of the Rényi divergence

-1 1
570 Ds(Pu i i)+ A1) o (1 : )
for any choice of sy, .

2) Using the DPI of the Rényi divergence to introduce the channel input and output
with a proper choice of SX2,v2 Wy g
.

n
A
pxg) = Z Dx(ayvreixzlISvre 1xre |P§<I)k)
=1

n
D)‘(pWTvWT,deWTSWT,d) <Dx (H AYre i |Xz
k=1

n
HSYTC,k|XI,k
k=1

3) Single-letterizing the Rényi divergence using the chain rule

n n
Dx HqYTf,k\XZ,k HSYTC,klxl,k
k=1 k=1
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Proof Steps Using Rényi Divergence

4) Representing distributions in the Rényi divergence by a single distribution

. . SN
@ Due to the careful choice of X2 Y2 Wy gy WE €N define Pxz o vre, St
~(\) ~(A)
E :D)‘ qYTC\XzHSYTC K| XTe, k|pXI x ) < E DA(pYTc KXz, kaYTc | X7e, k|pX1 k)

k=1 k=1

5) Introduction of a time-sharing variable followed by approximating / with Dj.
o Using a time-sharing variable Q, and letting A =1+ ﬁ ,

5 1+2) (+7) +75)
Z 1+ pYTc KXz, kH Yre, leTC k| XI k )
) (1+—=)
f f
<nDy 1 (pYTc .Qn1XZ,Qn ||pYTC .Qn X1 0y |pXI
< nl(Xt; Yre|Xre) + 8|1 X°|Y[°V/n

@ Combining the steps and letting n — oo,

Z R[ S I(XT; YTc‘lXTc).
ieT

f)
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Conclusion

@ In a multimessage multicast network (MMN), every source node transmits a
message and every destination node decodes all the messages.

@ A strong converse outer bound for the discrete memoryless MMN have been
established using Rényi divergence, i.e., outer bound on C..

For any sequence of codes that operate at a rate tuple outside the strong
converse bound, the average probability of decoding error must tend to 1.

Our strong converse bound implies the strong converse some classes of
MMNs including

o The finite-field linear deterministic network.

o The MMN consisting of independent DMCs.

@ The wireless erasure network.

For the aforementioned MMNs, we have fully characterized their e-capacity
regions, which coincide with the NNC inner bound and the cut-set bound.

Open problem: Prove or disprove that the cut-set bound contains C..
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